9880 series

DZR Brass Regulation Ball Valve with Connection for Actuator

Via Circonvallazione. 10 13018 Valduggia (VC), Italy Tel: +39 0163 47891 Fax: +39 0163 47895 www.vironline.com

PATENTER

DZR brass regulation ball valve with connection for actuator Available in the following versions:

Fig. 988S, 2-way, threaded M/M (ISO 228/1)

Fig. 988T, 3-way mixing, threaded M/M/M (ISO 228/1) • Actuator connection according to ISO 5211 F04-09mm Characteristic control curve according to VDI 2173 Linear char. on by-pass according to VDI 2173 (3-way only) Blow-out proof stem TR CU 010 compliant

Shell rating: PN40

Working conditions: Max 16bar, Max differential pressure 3,5bar Free of CE marking (cat. according to Art. 4.3 Dir. 2014/68/EU)

Working conditions

- Suitable for: water, -10°C to +130°C below 0°C only for water with added antifreeze fluids over 100°C only for water with added anti-boiling fluids (Ethylene glycol and propylene glycol mix. >20% and ≤50% may be used)
- Not suitable for: gases group 1 & 2, liquids group 1 (Dir. 2014/68/EU)

PARTLIST

N.	Part	Material	Norm		
1	Fixed end	DZR Brass	EN12165 CW602N		
2	Seat O-ring	EPDM Perox	-		
4	Seat	PTFE ¹	-		
4	Ball	Chrom. pl. DZR Brass	EN12164 CW602N		
5	Body	DZR Brass	EN12165 CW602N		
6	Stem	DZR Brass	EN12164 CW602N		
7	Antifriction ring	$PTFE+Bronzo+MoS_2$	-		
8	Stem O-ring	EPDM Perox	-		

DIMENSIONS

DN	т	L [mm]	LA [mm]	LB [mm]	HA [mm]	HB [mm]	ISO-□Q [mm]	Torque ¹ [Nm]	Weight ² [g]
015	1"	87,0	87,0 ³	43,4 ³	27,6 ³	10,0	F04 - □9	2,0	370 / 400 ³
020	1¼"	89,4	89,4	45,1	27,6	10,0	F04 - □9	2,0	440 / 530
025	1½"	90,0	98,4	49,6	30,5	10,0	F04 - □9	3,0	550 / 740
032	2"	100,0	114,0	63,7	34,3	10,0	F04 - □9	3,5	835 / 1220
040	2¼"	116,2	127,6	74,3	39,8	10,0	F04 - □9	3,5	1290 / 1870
050	2¾"	124,8	138,0	82,3	52,8	10,0	F04 - □9	3,5	2020 / 2800

¹Indicated torque valid for $\Delta p \le 1Bar$, torque is anyway $\le 5Nm$ in the max Δp working range

²2-way version weight / 3-way version weight

 $^3\text{For 3-way version}\ \text{K}_{_{\rm V100\%}}$ 6,3: LA 88,6mm, LB 44,4mm, HA 24,2mm, weight 440g

5,5mm

ʻ∩9/ḿm

- CHARACTERISTIC CURVE

Heat exchangers for HVAC system have a characteristic curve linking heat and flow which is not linear.

Using a valve with equal-percentage characteristic allow to compensate this curve.

The equal-percentage characteristic is obtained by using a special ball valve with shaped passage.

Q_{max} = maximum design flow I_{max} = maximum radiated heat

VALVE SIZING

63
0

Available K _{v100%} [m³/h] for 3- way valves										
	1,0	1,6	2,5	4,0	6,3	10	16	25	40	63
015		4	3	2	0					
020				2						
025						1				
032										
040								1		
050									1	

Valves are available in different $K_{_{\rm V100\%}}$ versions, the specific value is marked on the valves in the position indicated in the figure.

The specific $K_{v100\%}$ version of the value is identified by the sixth digit of the product code according to the tables above.

In the example the marking of a F988S2025.2599 valve.

$$K_{v100\%} = \frac{36 \cdot Q_{100\%}}{\sqrt{\Delta p_{100\%}}}$$

Calculate $K_{v100\%}$ theoretically required based on maximum design flow ($Q_{100\%}$ in I/s) and design pressure drop ($\Delta p_{100\%}$ in kPa) at valve completely opened.

Select the closest available $K_{\rm v100\%}$ on table below compatible with used pipe DN.

