9800 series

7

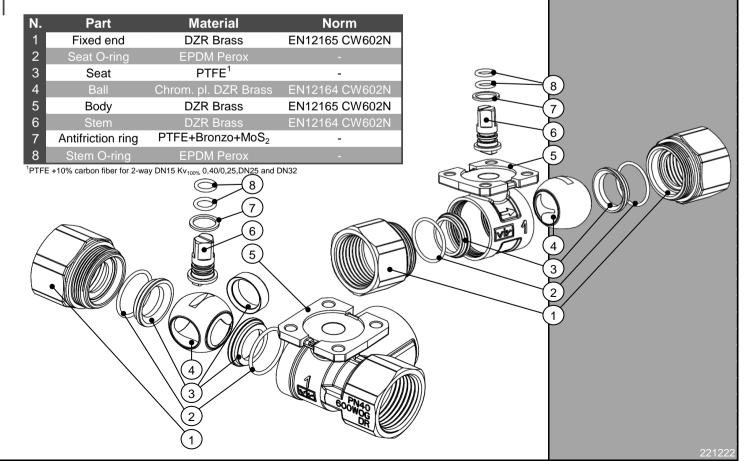
Via Circonvallazione, 10 13018 Valduggia (VC), Italy Tel: +39 0163 47891 Fax: +39 0163 47895 www.vironline.com

DZR Brass Regulation Ball Valve with Connection for Actuator

DZR brass regulation ball valve with connection for actuator Available in the following versions:

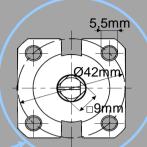
- Fig. 980S, 2-way, threaded F/F (ISO 7/1 Rp)
- Fig. 980T, 3-way mixing, threaded F/F/F (ISO 7/1 Rp) (available on request with ASME B1.20.1 NPT threads)
 Actuator connection according to ISO 5211 F04-□9mm
 Characteristic control curve according to VDI 2173
 Linear char. on by-pass according to VDI 2173 (3-way only)
 Blow-out proof stem

TR CU 010 compliant

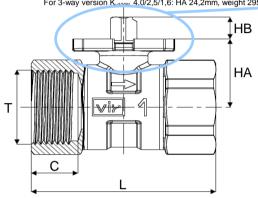

Shell rating: PN40

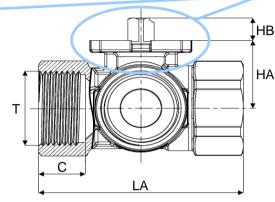
Working conditions: Max 16bar, max differential pressure 3,5bar Free of CE marking (cat. according to Art. 4.3 Dir. 2014/68/EU)

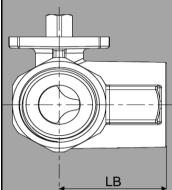
Working conditions


- Suitable for: water, -10°C to +130°C below 0°C only for water with added antifreeze fluids over 100°C only for water with added anti-boiling fluids (Ethylene glycol and propylene glycol mix. >20% and ≤50% may be used)
- Not suitable for: gases group 1 & 2, liquids group 1 (Dir. 2014/68/EU)

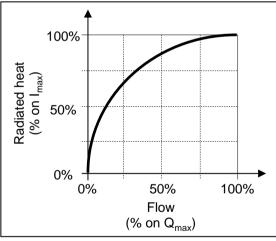
PARTLIST

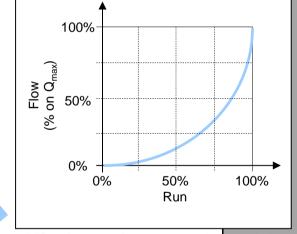

DIMENSIONS

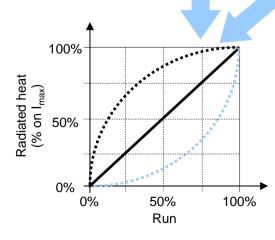

DN	Т	L	LA	LB	С	HA	НВ	ISO-□Q	Torque ¹	Weight ²
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[Nm]	[g]
015	1/2"	61,6	66,6	34,0	15,5	27,6 ³	10,0	F04 - □9	2,0	272 / 309 ³
020	3/4"	67,4	72,2	36,7	16,5	27,6	10,0	F04 - □9	2,0	303 / 375
025	1"	76,8	85,4	44,8	19,5	30,5	10,0	F04 - □9	3,0	452 / 604
032	11/4"	88	99,2	52,6	21,5	34,3	10,0	F04 - □9	3,5	689 / 949
040	1½"	101,8	109,6	57,1	21,5	39,8	10,0	F04 - □9	3,5	1114 / 1364
050	2"	116,2	131,4	68,9	25,0	52,8	10,0	F04 - □9	3,5	1748 / 2266



¹Indicated torque valid for Δp≤1bar, torque is anyway ≤5Nm in the max Δp working range


For 3-way version Kato 4,0/2,5/1,6: HA 24,2mm, weight 295g




CHARACTERISTIC CURVE

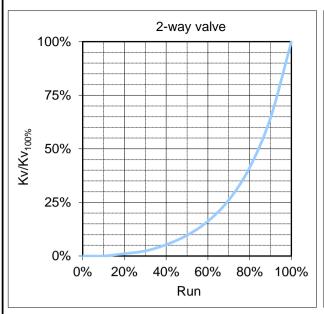
Characteristic curve of heat exchanger

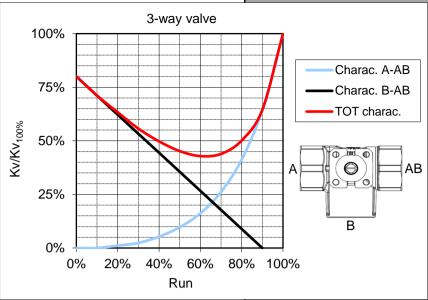
VIR valve, equal-percentage characteristic

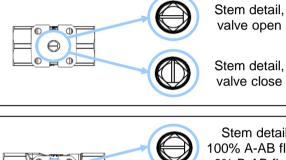
Heat exchangers for HVAC system have a characteristic curve linking heat and flow which is not linear.

Using a valve with equal-percentage characteristic allow to compensate this curve.

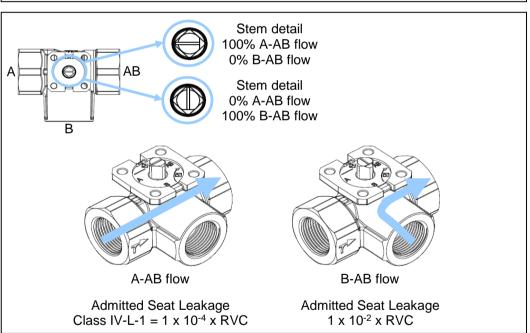
The equal-percentage characteristic is obtained by using a special ball valve with shaped passage.


Q_{max} = maximum design flow I_{max} = maximum radiated heat

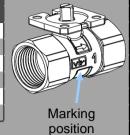



Tel: +39 0163 47891

²2-way version weight / 3-way version weight


 $^{^{3}}$ For 2-way version K $_{v100\%}$ 0,63/0,40/0,25: HA 24,2mm, weight 258g

No Visible Leakage when tested to verify Class IV-L-1



Admitted Seat Leakage Classes according to IEC 60534-4. RVC: "Rated Valve Capacity" as per IEC 60534-4 standard.

VALVE SIZING

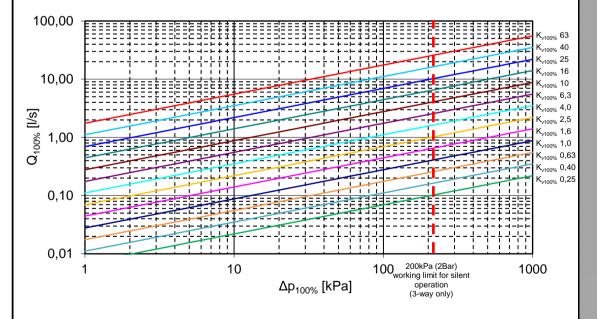
DN	Available Kv100% [m3/h] for 2-way valves												
DIN	0,25	0,40	0,63	1,0	1,6	2,5	4,0	6,3	10	16	25	40	63
015	8	7	6	5	4	3	2	1	0				
020							2		0				
025								2	1	0			
032									2		0		
040										2	1	0	
050											2	1	0

DN	Available K _{v100%} [m³/h] for 3-way valves											
	1,0	1,6	2,5	4,0	6,3	10	16	25	40	63		
015		4	3	2	1							
020				2								
025						1						
032												
040								1				
050									1	0 ¹		

¹By-pass flow only 60% of flow on the main port

Valves are available in different $K_{v100\%}$ versions, the specific value is marked on the valves in the position indicated in the figure.

The specific $K_{v100\%}$ version of the valve is identified by the sixth digit of the product code according to the tables above.


In the example the marking of a F980S2025.1861 valve.

$$K_{v100\%} = \frac{36 \cdot Q_{100\%}}{\sqrt{\Delta p_{100\%}}}$$

Calculate $K_{v100\%}$ theoretically required based on maximum design flow ($Q_{100\%}$ in l/s) and design pressure drop ($\Delta p_{100\%}$ in kPa) at valve completely opened.

Select the closest available $K_{v100\%}$ on table below compatible with used pipe DN.

