9800 series

DZR Brass Regulation Ball Valve with Connection for Actuator

Via Circonvallazione. 10 13018 Valduggia (VC), Italy Tel: +39 0163 47891 Fax: +39 0163 47895 www.vironline.com

PATENTE

DZR brass regulation ball valve with connection for actuator Available in the following versions:

- Fig. 980S, 2-way, threaded F/F (ISO 7/1 Rp)
- Fig. 980T, 3-way mixing, threaded F/F/F (ISO 7/1 Rp) • (available on request with ASME B1.20.1 NPT threads) Actuator connection according to ISO 5211 F04-□9mm Characteristic control curve according to VDI 2173 Linear char. on by-pass according to VDI 2173 (3-way only) Blow-out proof stem TR CU 010 compliant

Shell rating: PN40

Working conditions: Max 16bar, max differential pressure 3,5bar Free of CE marking (cat. according to Art. 4.3 Dir. 2014/68/EU)

Working conditions

- EAL Suitable for: water, -10°C to +130°C below 0°C only for water with added antifreeze fluids over 100°C only for water with added anti-boiling fluids (Ethylene glycol and propylene glycol mix. >20% and ≤50% may be used)
- Not suitable for: gases group 1 & 2, liquids group 1 (Dir. 2014/68/EU)

PARTLIST

Ν.	Part	Material	Norm		
1	Fixed end	DZR Brass	EN12165 CW602N		
2 3	Seat O-ring	EPDM Perox	-		
	Seat	PTFE ¹	-		2
4	Ball	Chrom. pl. DZR Brass	EN12164 CW602N		8)
5	Body	DZR Brass	EN12165 CW602N		7)
6	Stem	DZR Brass	EN12164 CW602N		6)
7	Antifriction ring	$PTFE+Bronzo+MoS_2$	-		
8	Stem O-ring	EPDM Perox	-		5)
¹ PTFE	+10% carbon fiber for 2-wa	y DN15 Kv _{100%} 0,40/0,25,DN25 and I	DN32		
		\bigcirc (7)			
					4 / / /
K		[5]			\neq / / /
					3)//
					2)/
			X		1
	1 710		$\langle \bigcap \rangle \rangle$	\backslash	U
	$\langle \rangle$				
	\ `			\leq)	
	$\langle \rangle$	(4)			
	\backslash				
		\land	600m40	/////	
		$\langle 2 \rangle$			
		$\tilde{1}$		/	
		\cdot			

DIMENSIONS LA LB С HA HΒ ISO-□Q **Torque**¹ Weight² L DN Т 5,5mm [mm] [Nm] [mm] [mm] [mm] [mm] [mm] [mm] [g] 015 1⁄2" 61,6 66,6 34,0 15,5 27,6³ 10,0 F04 - □9 2,0 272 / 309³ 36.7 020 27 6 F04 - ⊓9 303 / 375 025 Ø42mm 1" 76.8 85.4 44.8 19.5 30.5 10.0 F04 - □9 3.0 452 / 604 032 11/4 34.3 F04 - □9 689 / 949 040 F04 - □9 1114 / 1364 11/2" 101.8 109,6 57,1 21,5 39.8 10,0 3,5 9mm050 52.8 116 2 131.4 68 C ^IIndicated torque valid for Δp≤1bar, torque is anyway ≤5Nm in the max Δp working range ²2-way version weight / 3-way version weight ^3For 2-way version $\rm K_{v100\%}$ 0,63/0,40/0,25: HA 24,2mm, weight 258g 4.0/2,5/1,6: HA 24,2mm, weight 295g For 3-way version Ka Îнв ΉВ HA HA Т Т С С LB LA **CHARACTERISTIC CURVE** 100% 100% Radiated heat (% on I_{max}) Flow (% on Q_{max}) 50% 50% 0% 0% 0% 50% 100% 50% 100% 0% Flow Run (% on Q_{max}) Characteristic curve of heat exchanger VIR valve, equal-percentage characteristic Heat exchangers for HVAC system have a characteristic curve linking heat and 100% flow which is not linear. Radiated heat (% on I_{max}) Using a valve with equal-percentage characteristic allow to compensate this curve. R 50% The equal-percentage characteristic is obtained by using a special ball valve with shaped passage. 0% Q_{max} = maximum design flow 0% 50% 100% 13018 Valduggia (VC). Italy Imax = maximum radiated heat Run

Via Circonvallazione, 10 13018 Valduggia (VC), Italy Tel: +39 0163 47891 Fax: +39 0163 47895 www.vironline.com

VALVE SIZING

		-												
	DN	0.25	0,40	0,63	Ava 1,0	ilable ł 1,6	<100% vv100% 2,5	6 [m3/h 4,0] for 2- 6,3	way va 10	lves 16	25	40	63
		0,23	0,40	0,05	1,0	1,0	2,5	4,0	0,5	10	10	23	40	05
	015	8	7	6	5	4	3	2	1	0				
	020							2		0				
	025								2	1	0			
	032									2	1	0		
	040										2	1	0	
	050											2	1	0
ľ														
											l I			

DN	Available K _{v100%} [m³/h] for 3-way valves										
	1,0	1,6	2,5	4,0	6,3	10	16	25	40	63	
015		4	3	2	1						
020				2							
025						1					
032											
040								1			
050									1	0 ¹	

¹By-pass flow only 60% of flow on the main port

Valves are available in different $K_{v100\%}$ versions, the specific value is marked on the valves in the position indicated in the figure.

The specific $K_{v100\%}$ version of the value is identified by the sixth digit of the product code according to the tables above.

In the example the marking of a F980S2025.1861 valve.

$$K_{\nu 100\%} = \frac{36 \cdot Q_{100\%}}{\sqrt{\Delta p_{100\%}}}$$

Calculate $K_{v100\%}$ theoretically required based on maximum design flow ($Q_{100\%}$ in I/s) and design pressure drop ($\Delta p_{100\%}$ in kPa) at valve completely opened.

Select the closest available $K_{\rm v100\%}$ on table below compatible with used pipe DN.

Marking position

