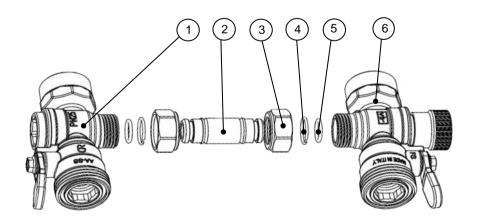
91BY

Valve for HVAC Terminal Units Mounting

Via Circonvallazione, 10 13018 Valduggia (VC), Italy Tel: +39 0163 47891 Fax: +39 0163 47895 www.vironline.com

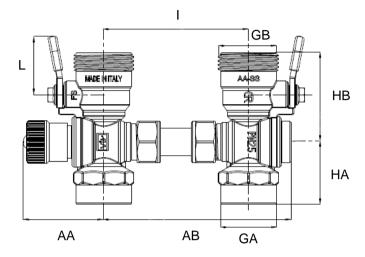
Valve for HVAC terminal units mounting (fan coils, heat exchangers and so on)
Threaded M/M for union end (ISO 228/1) on coil side
Threaded F/F (ISO 7/1 Rp) on pipe side
Air testing according to EN12266-1
Standard center to center 80mm, customizable
Blow-out proof stems
TR CU 010 compliant

PN25 (Max 25bar up to 100°C, max 20bar at 130°C) Free of CE marking (cat. according to Art. 4.3 Dir. 2014/68/EU)


Working conditions

- Suitable for: water, -10°C to +130°C below 0°C only for water with added antifreeze fluids over 100°C only for water with added anti-boiling fluids
- Not suitable for: gases group 1 & 2, liquids group 1 (Dir. 2014/68/UE)

PARTLIST

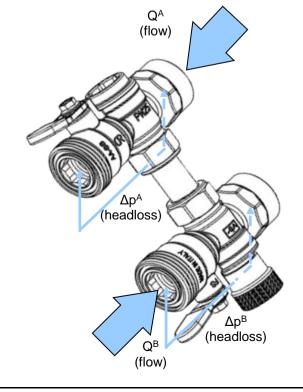

N.	Part	Material	Norm
1	By-pass valve	DZR Brass	EN12165 CW602N
2	Spacer	DZR Brass	EN12164 CW602N
3	Nut	Brass	EN12165 CW617N
4	Seeger ring	Acciaio inox	AISI 302
5	O-ring	EPDM Perox	-
6	By-pass valve	DZR Brass	EN12165 CW602N

DIMENSIONS

DN	GA	GB	AA ¹ [mm]	AB [mm]	HA [mm]	HB [mm]	L [mm]	l [mm]	Weight [g]
015	1/2"	1"	44,5	103,5	33,7	51,6	34	80	758
020	3/4"	1"	47,0	101,0	38,1	58,9	34	80	760
025	1"	11/4"	47,0	106,0	42,9	58,9	34	80	1124

¹With extended handweel it increases by 4,5mm

HEADLOSS CALCULATION


$$\Delta p = \left(\frac{36 \cdot Q}{K_V}\right)^2$$

Formula linking flow Q (in l/s) and theoretical valve headloss Δp (in kPa). Supposing to have a close-circuit heat exchanger ($Q^A=Q^B=Q$, closed by-pass) and with Kv values as per below table:

$$\Delta p^{A} = \left(\frac{36 \cdot Q^{A}}{K_{v}^{A}}\right)^{2}$$

$$\Delta p^{B} = \left(\frac{36 \cdot Q^{B}}{K_{v}^{B}}\right)^{2} \rightarrow \Delta p^{tot} = \Delta p^{A} + \Delta p^{B} = \left(\frac{36 \cdot Q^{A}}{K_{v}^{A}}\right)^{2} + \left(\frac{36 \cdot Q^{B}}{K_{v}^{B}}\right)^{2} \quad or \quad \Delta p^{tot} = \left(\frac{36 \cdot Q}{K_{v}^{tot}}\right)^{2}$$

DN	K _v ^A [m³/h]	K _v ^B [m³/h]	K _v ^{tot} [m³/h]
015 ₀₈₀	13,6	9,1	7,6
020 ₀₈₀	27,8	20,1	16,3

